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Abstract. Freezing of gait (FoG) is a common gait impairment among
patients with advanced Parkinson’s disease. FoG is associated with falls
and negatively impact the patient’s quality of life. Wearable systems
that detect FoG have been developed to help patients resume walking by
means of auditory cueing. However, current methods for automated de-
tection are not yet ideal. In this paper, we first compare feature learning
approaches based on time-domain and statistical features to unsuper-
vised ones based on principal components analysis. The latter systemat-
ically outperforms the former and also the standard in the field – Freezing
Index by up to 8.1% in terms of F1-measure for FoG detection.
We go a step further by analyzing FoG prediction, i.e., identification of
patterns (pre-FoG) occurring before FoG episodes, based only on mo-
tion data. Until now this was only attempted using electroencephalog-
raphy. With respect to the three-class problem (FoG vs. pre-FoG vs.
normal locomotion), we show that FoG prediction performance is highly
patient-dependent, reaching an F1-measure of 56% in the pre-FoG class
for patients who exhibit enough gait degradation before FoG.

Keywords: Unsupervised feature learning, Freezing of Gait, Parkin-
son’s disease

1 Introduction

Freezing of gait (FoG) is a common gait impairment among patients with Parkin-
son’s disease (PD), defined as a “brief, episodic absence or marked reduction
of forward progression of the feet despite the intention to walk“ [18]. Patients
describe FoG as the feeling of having the feet glued to the ground and being
temporarily unable to re-initiate gait. According to a survey of 6620 PD pa-
tients, 47% of the subjects reported regular freezing and 28% experienced FoG
daily [13]. FoG is associated with falls [12], has substantial clinical and social
consequences [6, 15] and is often resistant to pharmacological treatment [2].

Rhythmic auditory stimulation (RAS) was introduced as an assistive tool for
FoG treatment [8]. RAS can be applied to produce a rhythmic ticking sound upon
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detection of a FoG episode, to help the patient resume walking. Wearable systems
based on motion sensors have been proposed for the detection and treatment
of FoG with auditory stimulation [1, 11]. While RAS upon detection helps to
shorten the duration of FoG episodes [1], it cannot avoid them altogether due
to the latency of the detection, which is at best on the order of hundreds of
milliseconds [11]. A step further is to predict when a patient is about to experience
FoG, thus enabling preemptive RAS, with the goal of avoiding the FoG episodes.
We call this FoG prediction as opposed to FoG detection.

There are some known specific properties that differentiate the sensor data
during FoG episodes from normal walking (e.g., a large increase in the signal
energy in the 3-8Hz frequency band [9,15]) and the gait of patients with FoG also
differs between freezing episodes, compared to patients who do not experience
FoG [10]. There are even suggestions of a characteristic change in the gait pattern
just prior to the occurrence of a FoG episode; however, currently, there is no way
of automatically identifying the prodromal state, when the normal gait pattern
is about to transform into FoG.

The lack of physiological understanding of the gait deterioration preceding
FoG makes it difficult to come up with a model or with problem-specific features
based on expert knowledge. Moreover, walking styles of PD patients differ across
subjects (including diverse motor anomalies) [17]. Thus eventual patterns in the
data just before a FoG event will also likely be highly subject-specific. Never-
theless, previous work suggests that there is a deterioration of the normal gait
before FoG, although this deterioration can be expressed in various ways [17–19].

In this work, we first formulate the FoG detection problem as a two-class
classification problem: FoG versus normal locomotion. Similarly, we treat FoG
prediction problem as a three class classification problem. Beside FoG and normal
locomotion, we consider the walking periods before FoG episodes as a third class
called pre-FoG. We hypothesize that there is a detectable deterioration of gait
in this phase which precedes FoG. We assume different durations of the pre-
FoG events, since these cannot be labeled by an expert, but can rather only
be retrieved through data mining from segments of data preceding FoG events.
We focus on the analysis of different feature extraction approaches that lead to
a meaningful representation of both the FoG and the new pre-FoG class. The
feature extraction approaches that we investigated are the following:

(a) Extraction of standard frequency-based features, namely Freezing Index and
total energy in the frequency band 0.5-8 Hz. This is the current standard in
the field and serves as a baseline [15].

(b) Extraction of various hand-crafted time-domain and statistical features, which
are used in pattern recognition problems involving motion or human activity
recognition.

(c) Unsupervised feature learning [20]. This method involves extraction of in-
formation from the raw data, without relying on domain specific knowledge,
or on the availability of ground truth annotations. We evaluate the use of
principal component analysis for extracting a compact representation of the
structure of the signals.
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The contributions of this work are summarized as follows:

1. We go beyond state of the art by explicitly introducing and performing
a first step toward FoG prediction, as opposed to mere detection, thereby
potentially allowing for the possibility of applying preemptive RAS;

2. We compare three methods for feature extraction in the FoG detection and
FoG prediction problems and show that unsupervised feature learning out-
performs on average standard feature extraction schemes in our real-life
dataset;

3. We show that removal of pre-FoG sequences from the training data for FoG
detection improves classification performance;

4. For FoG prediction, we show that, for some patients, gait anomalies associ-
ated with the upcoming onset of FoG can be detected, thereby allowing for
an early intervention with RAS.

2 Related Work

FoG detection. Several research groups have proposed wearable systems for
the detection of FoG episodes [1, 4, 5, 7, 11, 14–16, 21, 23]. Most sensor setups
involve accelerometers and/or gyroscopes [1, 5, 11, 16, 21], extended with elec-
troencephalography (EEG) [7] or electromyography (EMG) [4]. One standard
feature which is extracted from the raw signals is the Freezing Index (FI), de-
fined as the ratio between the power contained in the so-called freezing and
locomotion frequency bands (3-8 Hz and 0.5-3 Hz respectively) [1, 11, 15]. This
feature is convenient since it requires only FFT-computation. Other feature ex-
traction approaches involve mixed time-frequency features [23] and entropy [21].
In [14], the authors investigated the use of time-domain and statistical features,
together with FFT-features. Various classifiers have been used for the two-class
classification problem (FoG versus no-FoG), including Decision Trees, Random
Trees/Forests, Naive Bayes [21] as well as rule-based classifiers [5] and simple
thresholds on the FI [1]. Overall, the different proposed approaches reach de-
tection sensitivities that often exceed 80%, but the detection is performed with
at best a latency of a few hundred milliseconds. Handojoseno and colleagues [7]
make use of wavelet decomposition to analyze the dynamics of EEG signals
during the onset and the freezing periods. Their aim was to achieve an early de-
tection of FoG from brain activity that could, potentially, help patients to avoid
an impending FoG episode. To our best knowledge, no attempts have been yet
made at tackling the FoG prediction problem using just motion sensors. We
therefore perform a first analysis in this direction.

Unsupervised feature learning. Automatic (unsupervised) feature ex-
traction has been proposed in the context of human activity recognition based on
motion sensors. Plötz et al. [20] argued that instead of using the explicit knowl-
edge to select specific features, one can extract the core signal characteristics by
means of principal components analysis. This allows one to uncover meaningful,
low-dimensional representations of raw data without relying on domain-specific
knowledge. The results on public activity recognition datasets showed that the
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features learned in this unsupervised manner are more discriminative than state
of the art representations based on time- and frequency-domain features. We
propose to apply this method for detection and prediction of FoG, since the
properties of the FoG and pre-FoG signals are subject-dependent and difficult
to model.

3 Feature Extraction for FoG Detection and Prediction

The general process that we adopt for signal processing and classification is de-
picted in Figure 1. The set of operations is standard in pattern recognition prob-
lems involving motion data from on-body 3-dimensional accelerometers: sensor
signals are sampled and sliced into partially overlapping windows. In each win-
dow, features are extracted and the resulting vectors are classified according to
a pretrained model. In this work, we empirically set the window length to 1s (64
samples) with 0.25s of overlap (16 samples). We choose a Decision Tree classifier,

Fig. 1. Signal processing and classification for the detection and prediction of FoG.

because of its low computational cost when deployed. In this work, we focus on
the selection of the appropriate features for detection and prediction of FoG, so
the optimization of the classifier parameters is out of our scope. In the training
phase of the system, we use feature ranking based on Mutual Information (MI)
to rank the top discriminant time-based and statistical features [3]. We denote
with NF the number of top-ranked features retained in the classification process.

3.1 Feature Extraction Schemes

We choose three groups of features, the first of which has been already used in
the context of FoG detection and is used here as a baseline. We call supervised
the first two feature extraction approaches, since they involve features manually
selected due to expert knowledge. The features are computed for each window.

Supervised: Domain-specific Feature Extraction. The first feature group
contains the Freezing Index and the sum of energy in the freezing (3-8 Hz) and
locomotory (0.5-3 Hz) frequency bands. These features are obtained by comput-
ing the FFT, followed by binning, in order to compute the spectral distribution
of the energy in the desired bands.

Supervised: Feature Extraction of Time-domain and Statistical Fea-
tures. The second group of features is often used in activity recognition [22].
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Until now, only a small subset of these has been also applied to FoG detec-
tion [14]. We list the used features in Table 1. We extracted 18 features for each
of the three accelerometer axes (x, y, z) and six features using data from all three
axes. Unsupervised Feature Learning. For learning the implicit structure of

Table 1. Computed statistical features and their brief descriptions.

Axis Features
No. Feature Description

1,2 Min, Max Minimum and maximum of the signal
3 Median Median signal value
4,5 Mean, ArmMean Average value, and the harmonic average of the signal
6 Root Mean Square

(RMS)
Quadratic mean value of the signal

7 GeoMean Geometric average of the signal
8 Variance Square of the standard deviation
9 Standard Deviation

(STD)
Mean deviation of the signal compared to the average

10 Kurtosis The degree of peakedness of the sensor signal distribution
11 Skewness The degree of asymmetry of the sensor signal distribution
12 Mode The number that appears most often in the signal
13 TrimMean Trimmed mean of the signal in the window
14 Entropy Measure of the distribution of frequency components
15 Asymmetry coeffi-

cient
The first moment of the data in the window divided by STD over
the window

16 Range The difference between the largest and smallest values of the signal
17 Zero Crossing Rate

(ZCR)
Total number of times the signal changes from positive to negative
or back, normalized by the window length

18 Mean Crossing Rate
(MCR)

Total number of times the signal changes from below average to
above average, normalized by the window length

Sensor Features
No. Feature Description
55 Signal Magnitude

Vector (SMV)
Sum of the euclidean norm over the three axis over the entire win-
dow normalized by the window length

56 Normalized Signal
Magnitude Area
(SMA)

Acceleration magnitude summed over three axes normalized by the
window length

57,58,59 Eigenvalues of Dom-
inant Directions
(EVA)

Eigenvalues of the covariance matrix of the acceleration data along
x, y, and z axis

60 Averaged Accelera-
tion Energy (AAE)

Mean value of the energy over three acceleration axes

the data, each data window containing 64 samples for the three accelerometer
axes is arranged into a 192-dimensional vector (the first three entries correspond
to the first samples from the x, y and z axes, and so on). In the training phase,
principal component analysis (PCA) is then applied to the whole training data
matrix, obtained by stacking all the 192-dimensional vectors in the training set
and disregarding class labels. This yields a projection matrix, which is then used
in the testing phase to project the single data frames.
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3.2 Assumptions about pre-FoG Events: From FoG Detection to
Prediction

We assume that the gait cannot enter in the FoG state directly from walking
state. Rather, we assume that prior to FoG, there is a gait deterioration that
eventually leads to the FoG. This is represented by a transition period of vari-
able duration TPrefog that we refer to as the pre-FoG state. An example of
FoG episode, with supposed pre-FoG, is shown in Figure 2. The optimal value
of TPrefog will be patient-dependent. The identification of segments of pre-FoG
data is valuable both for FoG detection and prediction. Making Detection

Fig. 2. An example of an accelerometer signal, on the three acceleration axes, that
captures the motor variations in the gait of a patient with Parkinson’s disease. The
sequence contains normal gait, a FoG episode, preceded by a assumed pre-FoG period.

More Robust. For the detection problem, we set up a two-class classification
problem. We name the two classes WALK (which includes instances of normal
locomotion, including walking, standing, turning, etc.) and FoG, which repre-
sents the freezing episodes. In the training phase, we remove data for a duration
of TPrefog before each FoG event contained in the training set. This aims at
having a more precise classifier model for the FoG and for the WALK classes.

Towards FoG Prediction. For prediction, we set up a three-class classifi-
cation problem. Besides the two classes described above (WALK and FoG), we
use the segments assumed to be in a pre-FoG state to build the model for the
third class.
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4 Dataset

We validated the proposed approach on the public available DAPHNet dataset3

[1], which contains data collected from eight PD patients that experienced regu-
lar FoG in daily life. Data were recorded using three 3D accelerometers attached
to the shank (above the ankle), the thigh (above the knee) and to the lower
back of each subject. For our experiments here we focused on movement data
recorded from the ankle, as the data from the other two sensors generally behave
similarly. Subjects completed sessions of 20-30 minutes each, consisting of three
walking tasks: (1) Walking back and forth in a straight line, including several
180-degrees turns; (2) Random walking with a series of initiated stops and 360
degrees turns; (3) Walking simulating activities of daily living, which included
entering and leaving rooms, walking to the kitchen, getting something to drink
and returning to the starting room with a cup of water.

Motor performances varied strongly among the participants. While some sub-
jects maintained regular gait during nonfreezing episodes, others walked slowly
and were very unstable. The DAPHnet dataset contains 237 FoG episodes; the
duration of FoG episodes is between 0.5s and 40.5s (7.3±6.7s). 50% of the FoGs
lasted for less than 5.4s and 93.2% were shorter than 20s. FoGs were labeled by
physiotherapists using synchronized video recordings. The start of a FoG event
was defined as the point when the gait pattern (i.e., alternating left-right step-
ping) was arrested, and the end of a FoG was defined as the point in time when
the pattern was resumed.

5 Experiments and Evaluation

We performed two sets of experiments using the DAPHnet dataset described in
Section 4: one for FoG detection and one for FoG prediction. For FoG-detection
we ignored the pre-FoG sequences. For both sets of experiments and for two of
the three groups of features introduced in Section 3.1, we varied the number
of selected features NF from 5 to 60 in steps of 5. This cannot be done for
the domain-specific features, since they are only two - FI and total energy. We
further characterized the influence of different choices of the pre-FoG duration
on both the two-class and three-class problem, by sweeping the assumed pre-FoG
duration in the range TPrefog ∈ {1s, 2s, ..., 11s}.

The evaluation was performed on a patient-dependent basis. Since in each
patient dataset the WALK class was over-represented compared to the FoG class,
we chose to balance the data by having size(WALK) = X ∗ size(FoG), where
X ∈ {1.5, 2, ..., 10}. We performed an N = 10-fold cross validation, in which
the training data contains N-1 parts from the FoG data, N-1 parts from normal
locomotion data, and the testing data the rest. The data were split for each
fold in such a way as to avoid having time-correlated chunks of the same FoG,
WALK, or pre-FoG events in the training and testing data.

3 www.wearable.ethz.ch/resources/Dataset
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We report results in terms of overall patient datasets average sensitivity and
average specificity of the FoG class, and F1-measures for FoG, WALK and pre-
FoG classes, in a window-to-window comparison.

6 Results

In the following, we analyze the performance of the different feature extraction
strategies for the FoG-detection and FoG-prediction problems.

6.1 Time-domain and Statistical Features

The top ranked features based on MI for FoG detection are AAE, eigenvalues of
dominant directions, range, variance, root mean square, and standard deviation
(some features, like standard deviation and variance are of course strictly re-
lated). The top ranked features according to their MI are those computed from
the entire data window (all axes), followed by those on x-axis. Table 2 shows the
top k ranked features, for k ranging from 5 to 20. Note that selecting features

Table 2. Average top ranked features with Mutual Information.

Top k x axis y axis z axis sensor
Top 5 variance - variance EVA (2 direc-

tions), AAE
Top 10 RMS, variance,

range
variance, range variance EVA (3 direc-

tions), AAE
Top 15 variance, range,

RMS, min, STD
variance, range,
RMS

variance, range,
RMS

EVA (3 direc-
tions), AAE

Top 20 max, RMS, vari-
ance, STD, min,
range

variance, range,
RMS, max, min,
STD

RMS, variance,
range, min

EVA (3 direc-
tions), AAE

(a) Patient 2 (b) Patient 8

Fig. 3. AAE vs. variance on x-axis for (a) Patient 2 data and (b) Patient 8 data.

that are ranked highly by the MI does not automatically guarantee that they
are also discriminative enough. Figure 3 contains an example of distribution of
the top ranked features AAE and variance on x-axis. For some patients these
features are enough to distinguish between FoG and WALK – the two classes
form two distinct clusters when represented by these two features. Still, this does
not work for all the patients. For example, in the case of Patient 8, even if the
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top ranked features with MI are the same, their discriminative power is lower –
FoG is easily confused with WALK, when represented by the same two features.

6.2 FoG Detection

We compare the different feature learning approaches in terms of producing
discriminative feature sets for distinguishing FoG and normal gait. In Table 3
the sensitivity, specificity and F1 measures for two feature-extraction methods
are depicted as a function of number of features NF used for classification, for a
fixed duration of ignored data TPrefog = 3s before each FoG. The classification
results are significantly improved when performing unsupervised feature learning
compared to the results for the standard feature set, for values of NF < 30.
Classification based on PCA features also outperforms the one using FFT-based
features, when using small number of PCA features (see Figure 4). In Figure 4,

Table 3. Average of the sensitivity, specificity and F1-measure for the FoG class for
supervised and unsupervised feature extraction methods, in the two-class classification
problem. The pre-FoG duration is fixed as TPrefog = 3s.

Sensitivity (%)

Features 5 10 15 20 25
Unsupervised 77.15 77.7 76.29 76.86 76.86

Supervised 67.8 68.53 69.42 66.65 67.58

Specificity (%)

Features 5 10 15 20 25
Unsupervised 86.71 87.56 86.65 86.21 85.52

Supervised 84.75 86.76 87.76 88.74 88.52

F1 (FoG)(%)

Features 5 10 15 20 25
Unsupervised 78.2 79.09 77.53 77.62 76.29

Supervised 70.94 72.54 73.79 72.33 73.02

F1 (WALK) (%)

Features 5 10 15 20 25
Unsupervised 85.91 86.53 85.67 85.5 85.35

Supervised 82.25 83.58 84.37 84.21 84.29

we observe that for larger values of NF , the classification performances tend to
decrease for unsupervised extracted features. PCA concentrates the variability
and the useful information from the raw data in the first features. The usefulness
of a feature decreases with its rank. However, our target is to use as few features
as possible, as noted above.

In Figure 5, we present the classification results with NF = 10 features, when
varying the amount of discarded data before each FoG episode in the range
TPrefog ∈ [1s, 11s], in steps of 1s. We observe that for both supervised and
unsupervised features, FoG detection performance increases with the increase of
TPrefog, until reaching a plateau value at TPrefog = 5 − 6s. This suggests that
these discarded portions of data could contain properties that are different both
from FoG and normal locomotion. In the next set of experiments, we analyze
whether this dataset has specific properties that will lead to prediction of FoG
episodes.
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(a) F1 for FoG class (b) F1 for WALK class

(c) Sensitivity (d) Specificity

Fig. 4. Sensitivity, Specificity and F1 measures for FoG detection when using different
values for NF unsupervised and supervised extracted features. The amount of discarded
data is fixed to TPrefog = 3s before each FoG episode.

6.3 Towards FoG Prediction.

In the previous experiments, we observed that discarding TPrefog data preceding
each FoG episode improved the FoG detection results for all types of feature
extraction. We now present the results for the three-class classification problem,
where we use the discarded chunks as examples of the pre-FoG class. As a first
step, we analyzed the impact of the addition of this third class to the mutual
information between the various features and the classes.

Mutual Information. We compare the mutual information of the features in
the FoG-detection and FoG-prediction problems. Figure 6 shows an example of
MI values computed for both supervised and unsupervised features, on the same
Patient 2 dataset, in case of FoG detection and FoG prediction problems. We
observe that all MI values improve for top ranked features, when adding the
third class. This suggests that the pre-FoG data can indeed be representative.

Performance of FoG Prediction In the next experiments, we set NF = 10,
and we varied Tpre−FoG from 1s to 6s, in steps of 1s. We stopped at 6s because
a further increase did not improve the FoG prediction results.

Figure 7 shows the variation of F1-measures for all the three classes versus
the value of TPrefog. We first observe that, like in the two-class classification
problem (FoG detection), the unsupervised features perform better than the
supervised ones. Second, the F1-measures for the FoG and WALK classes are
smaller than in the two-class problem. This is expected since we are trying to
solve a classification task with one extra class – pre-FoG – which is identified
using an assumption on its presence and duration, which leads inevitably to a
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Fig. 5. Sensitivity, Specificity and F1-measures for FoG detection when using NF = 10
unsupervised and supervised extracted features. The amount of discarded data varies
between TPrefog = 1s and TPrefog = 11s.
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Fig. 6. MI values for all Ntotal = 60 computed features, both with supervised and
unsupervised methods, for FoG detection and FoG prediction. TPrefog = 5s.

noisy training. Instances of the pre-FoG class will indeed not always be radi-
cally different from WALK or FoG instances, which will introduce confusion.
Nevertheless, we identify a trade-off: we can use the unsupervised feature ex-
traction to perform FoG prediction at the expense of performance on detection.
Too small values of TPrefog lead to poor results on the F1-measures, because
the pre-FoG class is not representative enough. On the contrary, indefinitely in-
creasing TPrefog improves the F1-measure only for this class, but dramatically
decreases that of the other classes. This is due to the fact that the pre-FoG and
WALK classes become more and more similar.
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Fig. 7. F1-measures for FoG prediction when using NF = 10 unsupervised and super-
vised extracted features, with TPrefog ∈ [1s, 6s].
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Fig. 8. F1-measures for FoG prediction on Patient 3 and Patient 8 data when using
NF = 10 unsupervised and supervised extracted features, with TPrefog ∈ [1s, 6s].

Figure 8 displays the F1-measure variations for the datasets of Patient 3
(PD3) and Patient 8 (PD8). In the case of PD3, when using unsupervised ex-
tracted features, for TPrefog periods of 2s and 3s, the F1-measures increase for
all the classes. The F1-measures for the pre-FoG class are 0.42 for TPrefog = 2s
and 0.56 for TPrefog = 3s. So there are common patterns in the 2s or 3s be-
fore FoG episodes that are distinct from WALK and FoG. The same behavior
of F1-measures is observed for supervised extracted features, but with a delay
compared to using unsupervised features. For TPrefog = 1s supervised features
even outperform the unsupervised ones. The likely reason is that with such short
pre-FoG durations, PCA in unable to capture the structure of that class. On the
other hand, for PD8, an increase of TPrefog leads to a constant decrease in per-
formance for the detection of the FoG and WALK classes, while having a small
increase for pre-FoG (along with a decrease of the WALK F1-measure). That
shows that WALK and pre-FoG are similar, thus using two distinct classes just
leads to confusion in the classification. So, for this patient, we cannot extract
specific patterns that could differentiate pre-FoG from the global WALK class.
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6.4 Discussion

The classification performance for FoG detection is not as high as that reported
in other works. We believe this is mainly due to a less optimistic evaluation
scheme, where we selected the training and testing data in each fold to avoid
having training and testing data chunks coming from the same FoG episodes at
once. This should lead to a more realistic estimate of the performance of a real-
world deployed system. Furthermore, FoG-prediction performances vary consid-
erably across subjects. We can claim that for some PD patients, like Patient 3,
there are patterns, visible in the accelerometer data, that are characteristic of
the pre-FoG class, making it different from the normal locomotion class. These
patients exhibit a deterioration of the walk just before FoG episodes.

There are some limitations related to the assumtpions on the pre-FoG class:

– Different nature of the FoG episodes. Some FoG events occur when the sub-
ject starts walking, meaning there is no gait before the FoG, so that the gait
deterioration that we assume to exist in the pre-FoG phase does not exist,
rendering FoG prediction especially challenging for those cases.

– The duration of the pre-FoG class TPrefog is considered to be fixed for each
patient. Nevertheless, the pre-FoG pattern duration will probably vary even
for different FoG episodes for the same patient. This means that an opti-
mal training set for the pre-FoG class for a single patient might need to
contain segments having different values for TPrefog. In order to determine
the correct value for each single instance, an approach could involve a di-
rect monitoring of the variation of the features, to detect when they start
changing from the normal status to the FoG status.

7 Conclusion

In this work, we analyzed the performance of three feature extraction approaches
for detecting freezing of gait in patients with Parkinson’s disease. Features based
on time-domain and statistical features where compared to unsupervised ones
based on principal components analysis, while Freezing Index (FI) was used as
a baseline reference. We tested the approaches on acceleration data collected at
the ankle from patients that experienced FoG in daily-life. Unsupervised feature
learning outperformed FI by up to 7.1% and the time-domain and statistical
features by up to 8.1% in terms of F1-measure for FoG detection.

We went a step further by analyzing FoG prediction, i.e. identification of pat-
terns (pre-FoG) occurring before FoG episodes, based only on acceleration data.
The purpose is to predict FoG so to assist patients in avoiding freezing periods
altogether. For this, we assume that walking sequences of a fixed length TPrefog

just previous to a FoG episode have different characteristics compared to normal
locomotion patterns and to FoG. On the three-class problem (FoG vs. pre-FoG
vs. normal locomotion) we obtained results highly patient-dependent, reaching
an F1-measure of 56% in the pre-FoG class for one patient. The identification of
pre-FoG patterns is also beneficial for the simple FoG detection: when pre-FoG
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data are discarded from the training set, performance on FoG detection increases
for all the feature extraction methods.

The use of unsupervised features is a promising avenue, since these capture
important variations in the data, without the bias of an expert choosing features
manually and without any prior knowledge of the class labels. In order to improve
the results, other, more complex unsupervised methods for feature learning will
be tested (PCA using nonlinear kernels, deep learning). Furthermore, additional
unobtrusive sensing modalities could be considered (e.g. gyroscopes). Finally,
our assumption on a fixed duration of the pre-FoG class for all FoG events
might need to be revised. To this end, methods monitoring directly changes in
the extracted features could be beneficial for identifying the actual start of the
pre-FoG phases, where present.
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